
ИННОВАЦИОННОЕ РАЗВИТИЕ И КОНКУРЕНТОСПОСОБНОСТЬ СТРАН МИРА

Ключевые слова: инновационное развитие, конкурентоспособность, Россия, системная социология

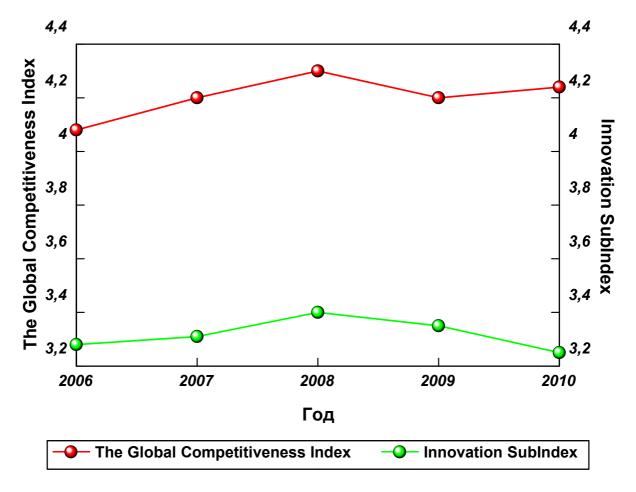
Введение

Известно [1], что уровень инновационного развития страны влияет на ее конкурентоспособность среди других стран мира в социуме. В качестве иллюстрации на рис.1 представлен фрагмент статистической зависимости между рангами некоторых стран мира, измеренными с помощью The Global Competitiveness Index (GCI) (Глобальный индекс конкурентоспособности) и рангами стран мира по Innovation SubIndex (субиндекс инновационного развития) из GCI за 2010 год. Вычисления производились автором с помощью онлайнаналитической платформы The Global Competitiveness Index Analyzer [2].

Рис.1 Зависимость между уровнем инновационного развития и конкурентоспособностью стран мира (2010 год)

[Цит. по 2]

Из рис.1 следует, что Россия в 2010 году по уровню конкурентоспособности, измеренного с помощью The Global Competitiveness Index (GCI), занимала 63 место среди 139 стран мира, а по уровню инновационного развития, измеренного с помощью Innovation SubIndex из GCI, занимала 57 место среди 139 стран мира.


Напомним, что The Global Competitiveness Index (GCI) [1] включает в себя 114 нормированных переменных («Hard» data - «жестких» данных - данные официальной международной статистики и «Soft» data - «мягких» данных - оценки экспертов) с «весам», сгруппированных в 12 субиндексов: Institutions, Infrastructure, Macroeconomic environment, Health and primary education, Higher education and training, Goods market efficiency, Labor market efficiency, Financial market development, Technological readiness, Market size, Business sophistication, Innovation.

Субиндекс Innovation включает в себя следующие переменные: Capacity for innovation, Quality of scientific research institutions, Company spending on R&D, University-industry collaboration in R&D, Government procurement of advanced technology products, Availability of scientists and engineers, Utility patents, Intellectual property protection.

С помощью The Global Competitiveness Index (GCI) [1] международные организации, инвесторы, правительства стран мира, эксперты сравнивают страны мира по производительности, анализируют эффективность различных секторов национальных экономик стран мира, целесообразность инвестирования, принятие стратегических и тактических управленческих решений и т.д.

На рис.2, также в качестве иллюстрации, представлена динамика значений The Global Competitiveness Index (GCI) и Innovation SubIndex из GCI для России за период 2006-2010 гг. [1].

Динамика значений The Global Competitiveness Index (GCI) и Innovation SubIndex (Россия, 2006-2010 гг.)

[Цит. по 1]

Однако, был неизвестен класс математической функции между значениями The Global Competitiveness Index (GCI) и Innovation SubIndex из GCI в 2010 году, среднее значение коэффициента пропорциональности k (1) для социума в целом в 2010 году и России за период 2006-2010 гг., класс распределения вероятностей значений коэффициента пропорциональности k (1) для социума в целом в 2010 году, что затрудняло последующее компьютерное моделирование.

$$y = kx, (1)$$

где y - значение The Global Competitiveness Index (GCI)

x - значение Innovation SubIndex из GCI

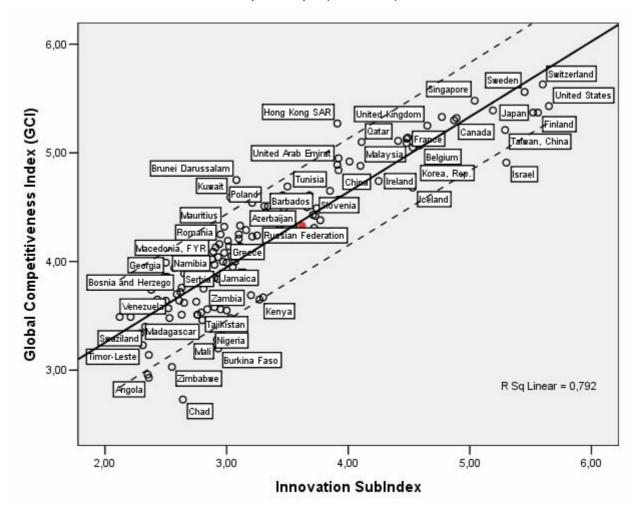
k - коэффициент пропорциональности

В этой связи автор поставил следующие исследовательские задачи:

- 1. Выявить класс математической функции между значениями The Global Competitiveness Index (GCI) и Innovation SubIndex из GCI в 2010 г. в социуме.
- 2. Выявить класс распределения вероятностей значений коэффициента пропорциональности k (1) для социума в целом в 2010 году.
- 3. Выявить среднее значение коэффициента пропорциональности k (1) для социума в целом за 2010 год.
- 4. Выявить среднее значение коэффициента пропорциональности k (1) для России за период 2006-2010 гг.

Методология

Решение поставленных исследовательских задач осуществлялось в рамках естественнонаучной парадигмы [3,4] системной социологии. В частности, исследование проводилось в рамках направления, которое в общей теории систем [5] называется «Часть-Целое». В рамках данного направления изучаются взаимодействие частей и целого в системах, соотношение размеров части и целого и т.д. В частности, значение коэффициента пропорциональности k (1) в модульной теории социума (МТС) [6-7], одной из частных теорий системной социологии, соответствует определенной функции, которую выполняет данное значение в социальной системе. В целом, исследование осуществлялось в рамках методологии Computational Sociology (вычислительной социологии) — одного из разделов системной социологии.


Методика

Для решения поставленных задач были использованы значения The Global Competitiveness Index и Innovation SubIndex для 139 стран мира за 2010 год, для России — значения данных индексов за период 2006-2010 гг. из онлайн Базы данных World Economic Forum [1]. Вычисления осуществлялись с помощью пакетов SPSS и EasyFit Professional (Version 5.4) [8], предназначенного для автоматической аппроксимации классов распределения вероятностей.

Полученные результаты

На рис. 3 представлена статистическая зависимость между значениями The Global Competitiveness Index (GCI) и значениями Innovation SubIndex из GCI для 139 стран мира за 2010 год [1]. На рис. 3 и в таблицах 1-2 представлены полученные результаты линейной регрессии.

Рис.3 Зависимость между уровнем инновационного развития и конкурентоспособностью стран мира (2010 год)

Примечание: пунктирные линии - 95% доверительный интервал

Таблица 1

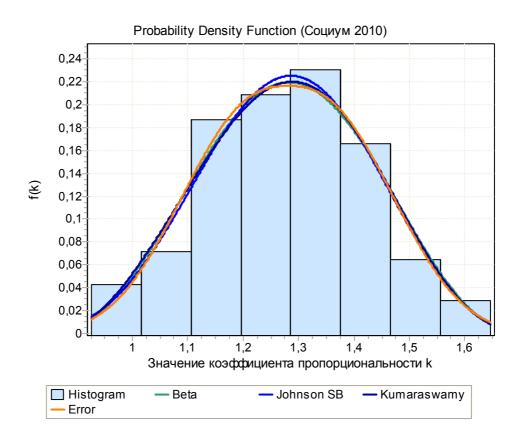
Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,890 ^a	,792	,790	,29495

a. Predictors: (Constant), Innovation SubIndex

b. Dependent Variable: Global Competitiveness Index (GCI)

Coe		


		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1,869	,104		17,896	,000
	Innovation SubIndex	,693	,030	,890	22,828	,000

a. Dependent Variable: Global Competitiveness Index (GCI)

Из рис. 3 следует, что наблюдается приближенная линейная зависимость между значениями The Global Competitiveness Index (GCI) и Innovation SubIndex из GCI в 2010 году в социуме.

На рис.4 представлены некоторые классы распределений значения коэффициента пропорциональности k (1) для социума в целом (139 стран мира) за 2010 год, имеющие максимальную величину аппроксимации (приближения), вычисленные автором с помощью пакета EasyFit Professional (Version 5.4) [8].

Рис.4

Примечание: значения параметров распределения Johnson SB: $\gamma = -0.16614$, $\delta = 1.9251$, $\lambda = 1.2298$, $\xi = 0.64079$

Автор остановился на распределении Johnson SB, поскольку данный класс распределения хорошо описывает распределение размеров частей в различных системах [9-10] и устойчив на различных периодах времени (см. рис.6).

Таблица 3

Социум 2010 год

Descriptives

			Statistic	Std. Error
Значение коэффициента	Mean		1,28062	,012730
пропорциональности k	95% Confidence	Lower Bound	1,25545	
для социума Interval for Mean	Upper Bound	1,30579		
	5% Trimmed Mean		1,28117	
	Median		1,27174	
	Variance		,023	
	Std. Deviation		,150089	
	Minimum		,926	
	Maximum		1,646	
	Range		,720	
	Interquartile Range		,214	
	Skewness		-,051	,206
	Kurtosis		-,386	,408

Таблица 4

Социум 2010 год

M-Estimators

	Huber's	Tukey's	Hampel's	Andrews'
	M-Estimator ^a	Biweight ^b	M-Estimator ^c	Wave ^d
Значение коэффициента пропорциональности k для социума	1,28136	1,28138	1,28125	1,28136

- a. The weighting constant is 1,339.
- b. The weighting constant is 4,685.
- C. The weighting constants are 1,700, 3,400, and 8,500
- d. The weighting constant is 1,340*pi.

Таблица 5

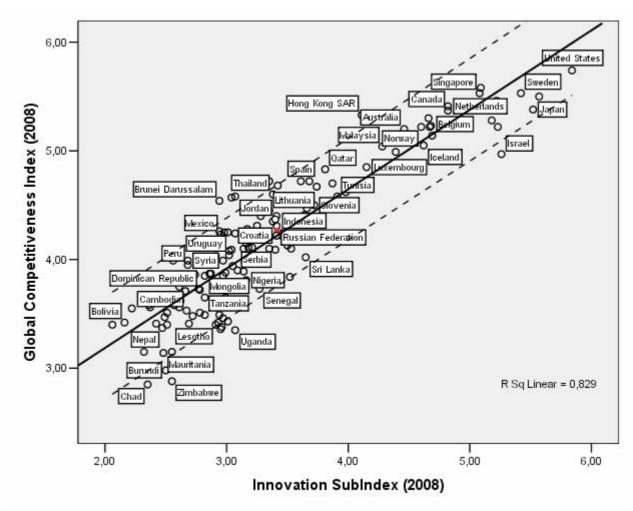
Россия 2006-2010 гг.

Descriptives

			Statistic	Std. Error
Значение коэффициента	Mean		1,2672	,01033
пропорциональности k	95% Confidence	Lower Bound	1,2385	
для России Interval for Mean	Upper Bound	1,2958		
	5% Trimmed Mean		1,2664	
	Median		1,2647	
	Variance		,001	
	Std. Deviation		,02309	
	Minimum		1,24	
	Maximum		1,30	
	Range		,06	
	Interquartile Range		,04	
	Skewness		1,268	,913
	Kurtosis		2,075	2,000

Таблица 6

Россия 2006-2010 гг.


M-Estimators

	Huber's	Tukey's	Hampel's	Andrews'
	M-Estimator ^a	Biweight ^b	M-Estimator ^c	Wave ^d
Значение коэффициента пропорциональности k для России	1,2625	1,2596	1,2624	1,2595

- a. The weighting constant is 1,339.
- b. The weighting constant is 4,685.
- C. The weighting constants are 1,700, 3,400, and 8,500
- d. The weighting constant is 1,340*pi.

Для проверки устойчивости во времени полученных результатов, был проведен анализ между значениями The Global Competitiveness Index (GCI) и Innovation SubIndex из GCI по 134 странам мира за 2008 год [1], которые были доступны автору. Полученные результаты представлены на рис. 5 и в таблицах 7-10.

Рис. 5 Зависимость между уровнем инновационного развития и конкурентоспособностью стран мира (2008 год)

Примечание: пунктирные линии - 95% доверительный интервал

Таблица 7

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,911 ^a	,829	,828	,27994

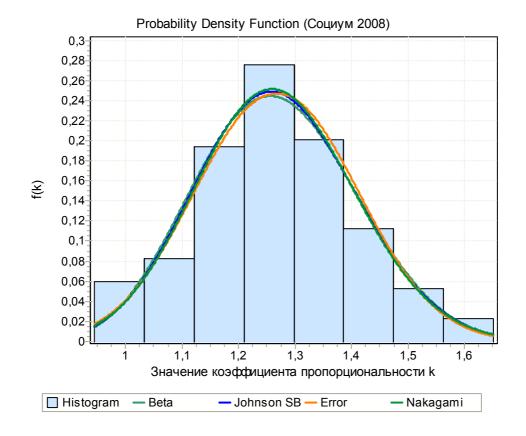

a. Predictors: (Constant), Innovation SubIndex (2008)

Таблица 8

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1,726	,101		17,159	,000
	Innovation SubIndex (2008)	,730	,029	,911	25,312	,000

a. Dependent Variable: Global Competitiveness Index (2008)

Примечание: значения параметров распределения Johnson SB: $\gamma=1.5098$, $\pmb{\delta}=4.0936$, $\pmb{\lambda}=2.3948$, $\pmb{\xi}=0.28482$

Распределение Johnson SB, представленное на рис.6, по мере аппроксимации (приближения) было наиболее точным из 50-ти классов распределений.

Таблица 9

Descriptives

			Statistic	Std. Error
Коэффициент	Mean		1,2669	,01206
пропорциональности k	95% Confidence	Lower Bound	1,2431	
для социума (2008) Interval for Mean	Upper Bound	1,2908		
	5% Trimmed Mean		1,2658	
	Median		1,2669	
	Variance		,019	
	Std. Deviation		,13961	
	Minimum		,94	
	Maximum		1,65	
	Range		,71	
	Interquartile Range		,19	
	Skewness		,125	,209
	Kurtosis		-,080	,416

М-	Es	tim	ato	rs

	Huber's	Tukey's	Hampel's	Andrews'
	M-Estimator ^a	Biweight ^b	M-Estimator ^c	Wave ^d
Коэффициент пропорциональности к для социума (2008)	1,2656	1,2649	1,2652	1,2648

- a. The weighting constant is 1,339.
- b. The weighting constant is 4,685.
- C. The weighting constants are 1,700, 3,400, and 8,500
- d. The weighting constant is 1,340*pi.

Результаты, представленные в таблицах 1-10, свидетельствуют, что полученные результаты для социума, в целом устойчивы на временном периоде 2008-2010 гг.

Обсуждение полученных результатов

Формула (1) является простейшим видом прямо пропорциональной зависимости, которая наблюдается между размерами частей и целого в различных системах, в том числе и в социальных системах.

В социуме за период 2008-2010 гг. наблюдается приближенная линейная зависимость между значениями The Global Competitiveness Index (GCI) и Innovation SubIndex из GCI, которая наблюдается в различных системах, в том числе и в социальных системах.

Значение коэффициента пропорциональности (1) для социума в целом в 2008-2010 гг. можно хорошо аппроксимировать распределением Johnson SB, которое хорошо аппроксимирует распределение размеров частей в различных системах [9-10].

Среднее значение коэффициента пропорциональности \bar{k} (1) для России за период 2006-2010 гг. с 95% доверительной вероятностью попадает в доверительный интервал значения \bar{k} (1) для социума в целом в 2010 году. Это означает, что наблюдается общесистемное свойство подобия [6-7] между целым и частью, которое наблюдается в различных системах.

В целом, имеются основания предполагать, что полученные результаты отображают общесистемные закономерности в строении и динамике социума и России.

Выводы

Проведенное исследование позволяет сделать следующие выводы:

- 1. За период 2008-2010 гг. в социуме наблюдалась приближенная линейная зависимость между значениями The Global Competitiveness Index (GCI) и Innovation SubIndex из GCI.
- 2. Распределение значения коэффициента пропорциональности k (1) для социума в целом в 2008-2010 гг. можно хорошо аппроксимировать распределением Johnson SB.
- 3. Среднее значение коэффициента пропорциональности \bar{k} (1) для социума в целом за 2010 год с 95% доверительной вероятностью заключено в интервале 1.2554-1.3058, при робастном (устойчивом) среднем значении $\bar{k}=1.28$.
- 4. Среднее значение коэффициента пропорциональности \bar{k} (1) для России за период 2006-2010 гг. с 95% доверительной вероятностью заключено в интервале 1.2385-1.2958, при робастном (устойчивом) среднем значении $\bar{k}=1.26$.

СПИСОК ЛИТЕРАТУРЫ

- The Global Competitiveness Reports. World Economic Forum, 2001-2011. (http://www.weforum.org/en/initiatives/gcp/Global%20Competitiveness%20Report/ t/PastReports/index.htm)
- 2. The Global Competitiveness Index Analyzer (http://gcr.weforum.org/gcr2010/)
- 3. Давыдов А.А. Конкурентные преимущества системной социологии. (Электронное издание) М.: ИС РАН, 2008. (http://www.isras.ru/publ.html?id=855 http://www.ecsocman.edu.ru/db/msg/324618.html)
- 4. Давыдов А.А. Системная социология: введение в анализ динамики социума. М.: ЛКИ, 2007.
- 5. Давыдов А.А., Чураков А.Н. О соотношении целого и большей части в социуме//Системные исследования. Ежегодник. 1998, ч. 2, М.: Эдиториал УРСС, 2000, С. 44-53.
- 6. Давыдов А.А. Модульный анализ и конструирование социума. М.: ИСАН, 1994.

- 7. Давыдов А.А., Чураков А.Н. Модульный анализ и моделирование социума. М.: ИСАН, 2000.
- 8. EasyFit Professional (Version 5.4) (http://www.mathwave.com/easyfit-distribution-fitting.html)
- 9. Ai-Bing Yu. Johnson's SB distribution function as applied in the mathematical representation of particle size distributions. Part 1: Theoretical background and numerical simulation//Particle & Particle Systems Characterization, 1994, Volume 11, Issue 4, P. 291–298.
- 10.Ai-Bing Yu. Johnson's SB distribution function as applied in the mathematical representation of particle size distributions. Part 2: Application of numerical results//Particle & Particle Systems Characterization, 1994, Volume 11, Issue 5, P. 367–374.