DHTML JavaScript Menu By Milonic
Новости РОС    


The World Congress on Engineering and Computer Science (WCECS10)

В рамках Конгресса пройдет International Conference on Machine Learning and Data Analysis (ICMLDA'10).

The topics of the ICMLDA'10 include, but not limited to, the following:

Machine Learning:

  • artificial neural networks
  • Bayesian networks
  • case-based reasoning
  • computational models of human learning
  • computational learning theory
  • cooperative learning
  • decision tree
  • discovery of scientific laws
  • evolutionary computation
  • statistical relational learning
  • grammatical inference
  • incremental induction and on-line learning
  • inductive logic programming
  • information retrieval and learning
  • instance based learning
  • kernel methods
  • knowledge acquisition and learning
  • knowledge base refinement
  • knowledge intensive learning
  • learning from text and web
  • evaluation metrics and methodologies
  • machine learning of natural language
  • meta learning
  • multi-agent learning
  • multi-strategy learning
  • planning and learning
  • reinforcement learning
  • revision and restructuring
  • statistical approaches
  • unsupervised learning
  • vision and learning

Data analysis and databases:

  • database integration
  • inductive databases
  • data mining query languages
  • data mining query optimization

Foundations of data analysis:

  • complexity issues
  • knowledge (pattern) representation
  • global vs. local patterns
  • logic for data mining
  • statistical inference and probabilistic modelling
     

Data pre-processing:

  • dimensionality reduction
  • data reduction
  • discretization
  • uncertain and missing information handling

Innovative applications:

  • web content, structure and usage mining
  • semantic web mining
  • mining governmental data, mining for the public administration
  • personalization
  • adaptive data mining architectures
  • invisible data mining

Algorithms and techniques:

  • classification
  • clustering
  • frequent patterns
  • rule discovery
  • statistical techniques and mixture models
  • constraint-based mining
  • incremental algorithms
  • scalable algorithms
  • distributed and parallel algorithms
  • privacy preserving data mining
  • multi-relational data mining

KDD process and process-centric data analysis:

  • models of the KDD process
  • standards for the KDD process
  • background knowledge integration
  • collaborative data mining
  • vertical data mining environments

Analysis of different forms of data:

  • graph, tree, sequence mining
  • semi-structured and XML data mining
  • text mining
  • temporal, spatial, and spatio-temporal data mining
  • data stream mining
  • multimedia miningPattern post-processing
  • Pattern post-processing
  • quality assessment
  • visualization
  • knowledge interpretation and use

Подробности на сайте Конгресса

Организаторы приглашают российских социологов принять участие в Конгрессе.

 


назад

версия для печати

КОММЕНТАРИИ К ЭТОЙ СТРАНИЦЕ



Оставить комментарий
Читать комментарии [0]: